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ABSTRACT
Audio captioning aims to automatically generate a natural language
description of an audio clip. Most captioning models follow an
encoder-decoder architecture, where the decoder predicts words
based on the audio features extracted by the encoder. Convolutional
neural networks (CNNs) and recurrent neural networks (RNNs) are
often used as the audio encoder. However, CNNs can be limited
in modelling temporal relationships among the time frames in an
audio signal, while RNNs can be limited in modelling the long-range
dependencies among the time frames. In this paper, we propose an
Audio Captioning Transformer (ACT), which is a full Transformer
network based on an encoder-decoder architecture and is totally
convolution-free. The proposed method has a better ability to model
the global information within an audio signal as well as capture
temporal relationships between audio events. We evaluate our model
on AudioCaps, which is the largest audio captioning dataset publicly
available. Our model shows competitive performance compared to
other state-of-the-art approaches.

Index Terms— Audio captioning, Transformer, sequence-to-
sequence model, cross-modal task

1. INTRODUCTION

Automated audio captioning (AAC) is concerned with describing an
audio clip using natural language and is a cross-modal translation
task at the intersection of audio processing and natural language
processing. Generating a meaningful description for an audio clip
not only needs to determine what audio events are presented, but also
needs to capture and express their spatial-temporal relationships. Au-
dio captioning is practically useful in applications such as assisting
the hearing-impaired to understand environmental sounds, retrieving
multimedia content, and analyzing sounds for security surveillance.

Unlike image and video captioning, which have been studied in
computer vision (CV) for a longer time, audio captioning is a task
investigated only recently [1]. With the announcement of the AAC
task in DCASE 2020 and 2021, this topic has attracted increasing
attention, and several methods have been proposed [2, 3, 4]. The
AAC task is usually treated as a sequence-to-sequence problem,
and existing methods are typically based on an encoder-decoder
architecture, where the decoder generates words according to the
audio features extracted by the encoder. Early works often adopted
an “RNN-RNN” architecture with an attention mechanism [1, 3].
However, RNNs can be limited in modeling long-term temporal
dependencies in an audio signal. Recently, CNNs have become a
dominant approach in audio-related tasks (audio tagging and sound
event detection) [5], with many researchers using pre-trained CNNs
as the audio encoder, which significantly improved the performance
in these systems [6]. More recently, inspired by the great success of

the Transformer model in natural language processing [7], the RNN
decoder has been replaced by a Transformer decoder in captioning
models, and the “CNN+Transformer” architecture has been shown
to achieve state-of-the-art performance in this area [8, 9].

Description of an audio signal needs to capture temporal-spatial
relationships between audio objects that may be far apart in time.
However, convolution is a local operator and has limitations in mod-
elling temporal information, especially with a long audio signal.
This can be alleviated by enlarging receptive fields with deeper con-
volutional layers. However, such deep CNNs can be hard to train
and can lead to over-fitting. To address this problem, we propose
an Audio Captioning Transformer (ACT), a convolution-free Trans-
former network based on the self-attention mechanism. We use
log mel-spectrograms as input and split the mel-spectrograms into
smaller non-overlapping patches along the time axis. By adopting
the self-attention mechanism, each patch can attend to all the other
patches at each layer of the encoder, which can model global long-
range dependencies among the small mel-spectrogram patches from
the beginning. Without the need for down-sampling, the features ex-
tracted by Transformer are fine-grained, which can contain detailed
local audio topics.

The Transformer usually requires more training data than CNNs
[10]. However, the amount of data currently available for audio
captioning is relatively small. To address this issue, the ACT encoder
is firstly pre-trained on AudioSet dataset [11] as an audio tagging task
in order to improve its generalization ability. A class token designed
to model the global information of an audio clip is appended at the
beginning of each patch sequence and is used to output audio tagging
results. As a result, when generating words, the decoder can attend
to local and global information of an audio clip simultaneously. The
proposed ACT model is evaluated on the AudioCaps dataset [3] and
shows competitive performance as compared to other state-of-the-art
methods.

The remaining sections of this paper are organised as follows.
In Section 2, we introduce the related work. The proposed model is
described in detail in Section 3. Experimental settings are shown in
Section 4. Results are discussed in Section 5. Finally, we conclude
our work in Section 6.

2. RELATED WORK

Previous work proposed in audio captioning has been based on deep
learning methods with an encoder-decoder architecture. Drossos
et al. [1] proposed the first approach to AAC using an RNN-based
encoder-decoder architecture with an alignment model in between.
To control the information contained in the output text, Ikawa and
Kashino [4] introduced a conditional parameter called “specificity”
to guide the caption generation. With the release of two freely avail-
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able datasets AudioCaps [3] and Clotho [12], AAC has attracted
increasing attention and more approaches have been proposed. Kim
et al. [3] proposed a model with a top-down multi-scale encoder and
aligned semantic attention, which enabled the joint use of multi-level
features and semantic attributes. As CNNs have achieved state-of-
the-art performance in audio tagging and sound event detection tasks
[5], some researchers replaced the RNN encoder with CNNs, which
brings significant performance gains [8, 6]. Recently, Transformer
has been introduced as the language decoder with a powerful abil-
ity in natural language generation tasks [8, 13, 14]. Takeuchi et al.
[15] formulated audio captioning as a multi-task learning problem,
where they proposed keywords estimation and sentence length es-
timation to avoid the indeterminacy of word selection. Koizumi
et al. [16] utilized a pre-trained large-scale language model GPT-2
[17] with audio-based similar caption retrieval to guide the caption
generation. Liu et al. [18] introduced a contrastive loss to get better
alignment between audio and texts in the latent space. Reinforce-
ment learning was used to optimize the audio captioning models
with non-differentiable evaluation metrics [19].

The Transformer was originally proposed for machine transla-
tion and has now become the dominant approach in natural language
processing tasks [7]. Recently, many researchers adopted the Trans-
former for computer vision tasks which was shown to approach or
outperform the state-of-the-art CNNs-based systems in image recog-
nition. Dosovitskiy et al. [10] proposed a Vision Transformer (ViT)
which was based purely on the attention mechanism, i.e. without us-
ing convolution kernels, and applied directly to sequences of image
patches for the image classification task. However, a large amount
of data are required for pre-training the Transformer models, which
limits their adoption. To address this problem, Touvron et al. [20]
introduced Data-efficient image Transformers (DeiT) using a data
efficiency training and distillation strategy. Based on ViT and DeiT,
Liu et al. [21] proposed a CaPtion TransformeR (CPTR) for image
captioning. As the Transformer is designed to deal with sequential
data, we argue that the Transformer can be adapted for audio sig-
nals, and the self-attention mechanism makes it more suitable to
capture temporal relationships between audio features and to model
the global information. Inspired by these ViT-related works, we pro-
pose the Audio Captioning Transformer (ACT) for audio captioning,
which, to our knowledge, has not been done in the literature.

3. PROPOSED METHOD

Fig. 1 shows the proposed Audio Captioning Transformer model,
which is based on the traditional sequence-to-sequence architecture
and is convolution-free. The model takes the log mel-spectrogram
of an audio clip as input and outputs the posterior probabilities of
the predicted words.

3.1. Encoder

Let X ∈ RT×F denote the log mel-spectrogram of an audio clip,
where T is the number of time frames and F is the number of mel
bins. The log mel-spectrogram is first split into N non-overlapping
small patches XN = {x1, ..., xn} along the time axis with size
of t × F where N = T/t and t is the number of time frames
of each patch. Then each mel-spectrogam patch is flattened to a
1D embedding and projected to a latent space through a learnable
matrix We ∈ R(t×F )×d, where d is the dimension of the latent
embedding. In line with ViT and DeiT, a global learnable class token
Xcls ∈ R1×d is appended to the beginning of the patch sequences,

…
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Figure 1: System overview of Audio Captioning Transformer, the
encoder is on the left side while the decoder on the right side.

which contains the global information for the audio clip. As the
self-attention mechanism cannot capture position information [7], a
trainable positional embedding Xpos ∈ R(T+1)×d is added to each
patch embedding. Mathematically, the final input representation is
given by

Xe = [Xcls +WeX] +Xpos (1)

The ACT encoder consists of Ne stacked identical layers. Each
layer contains two sub-layers, a multi-head self-attention layer and
a position-wise fully-connected feed-forward layer. In the self-
attention sub-layer, the input is first transformed into queryQ, keyK
and value V through matrix multiplication with three learnable ma-
trices WQ,WK ,WV ∈ Rd×dk , where dk is the dimension of each
attention head. Then the scaled dot-product attention is computed as

Attn(Q,K, V ) = Softmax(
QKT

√
dk

)V (2)

Each self-attention layer contains h attention heads which extends
the model’s ability to attend to different positions and creates multi-
ple representation subspaces [7]. The outputs of heads are then ag-
gregated through a linear transformation matrix Wo ∈ R(h×dk)×dk ,
which can be formulated as

MultiHead(Q,K, V ) = Concat(head1, ..., headh)Wo (3)

The feed-forward network contains two linear layers with GLEU
activation function and dropout applied between them. Layer normal-
ization is applied before each sub-layer and a residual connection is
employed around each of them, such that the output of each sub-layer
is given by

Xout = Xin + Sub layer(LayerNorm(Xin)) (4)

In order to make use of pre-trained models, the encoder architecture
is the same as ViT and DeiT containing 12 encoder blocks and 12
heads with an embedding dimension of 768.
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Model embedding dim # layers (Nd) # heads
ACT s 512 2 4
ACT m 512 4 8
ACT l 512 6 8

Table 1: Variants of the proposed ACT decoder.

3.2. Decoder

The ACT decoder contains three parts: a word embedding layer, a
Transformer decoder block, and a linear layer. Each input word is
embedded through the word embedding layer into a fixed dimension
word vector and then fed into the Transformer decoder block. The
word vectors are pre-trained by a Word2Vec model on all caption
corpus [22].

The Transformer decoder consists ofNd identical stacked layers.
There are two main differences compared to the ACT encoder block.
First, the first self-attention sub-layer in the decoder is a masked
self-attention because the caption generating process is causal and
auto-regressive. Second, there is a new cross multi-head attention
sub-layer between self-attention sub-layer and feed-forward sub-
layer, which allows every position in the decoder to attend over all
positions in the audio features extracted by the encoder [7]. The
output of the decoder module is fed through a final linear layer with
a softmax activation function to output a probability distribution over
the vocabulary.

The training objective of the model is to minimize the cross-
entropy (CE) loss

LCE(θ) = −
1

T

T∑
t=1

log p(yt|y1:t−1, θ) (5)

where yt is the ground-truth word at time step t and θ are the model
parameters. The “Teacher forcing” strategy is used during training,
i.e. each word to be predicted is conditioned on previous ground-
truth words. We experiment with three models, which share the
same encoder architecture described in Section 3.2 but have different
number of layers and heads in the decoder. Table 1 summarizes the
parameters in the decoder of these models.

4. EXPERIMENTS

4.1. Dataset

4.1.1. AudioSet

AudioSet is a large-scale audio dataset with an ontology of 527 sound
classes [11]. AudioSet contains more than 2 million 10-second audio
clips extracted from YouTube videos. As some audio clips are no
longer downloadable, there are 1 934 187 and 18 887 audio clips in
our training and evaluation set, respectively. Each audio clip can
have one or more labels for their presented audio events.

4.1.2. AudioCaps

AudioCaps is the largest audio captioning dataset currently available
with around 50k audio clips sourced from AudioSet [3]. AudioCaps
is divided into three splits. Each audio clip in the training set contains
one human-annotated caption, while each contains five captions in
the validation and test set.

4.2. Data pre-processing

All audio clips in these two datasets are converted to 32k Hz and
padded to 10-second long. Log mel-spectrograms extracted using
a 1024-points Hanning window with 50% overlap and 64 mel bins
are used as the input features. Each log mel-spectrogram is split into
125 non-overlap small patches with the size of 64× 4 along the time
axis. SpecAugment [23] is applied to augment the input features
during training.

Captions are tokenized and transformed to lower case with punc-
tuation removed. To indicate the start and end of each caption, two
special tokens “<sos>” and “<eos>” are padded. The vocabu-
lary of AudioCaps contains 5277 distinct words.

4.3. Audio tagging pre-training

As proved in previous works, Transformer requires more training
data to achieve competitive performance with CNNs [10]. However,
the amount of training data in audio processing area is much less
than that in computer vision. Cross-modal transfer learning from
ImageNet pre-trained models to audio-related tasks proves to be
effective [24]. Thus we make use of pre-trained DeiT models for
image classification to initialize the parameters in ACT encoder
[10, 20]. As images have three channels and spectrograms just have
one channel, we take the average of the weights from the patch
embedding layer in DeiT in order to adapt it for spectrogram.

As pre-trained audio neural networks (PANNs) proved to per-
form well in audio captioning [9], we pre-train ACT encoder on
AudioSet as an audio tagging task in order to solve the data scarcity
problem and learn more generalized audio patterns. Audio tagging
is a multi-classification task of predicting the presence or absence
of sound classes within an audio clip [25]. The class token output
from the encoder is fed through a linear layer with sigmoid activa-
tion function to output the audio events probabilities. The model is
trained to minimize the binary cross-entropy loss between the output
of the model and the true label

LBCE(θ) = −
N∑

n=1

(yn · ln f(xn) + (1− yn) · ln(1− f(xn)) (6)

where xn is the n-th audio clip in AudioSet and N is the number
of training samples. f(xn) ∈ [0, 1]K is the output of the model
and yn ∈ {0, 1}K is the true label where K is the number of sound
classes. The ACT encoder is pre-trained for 20 epochs with batch
size of 128 and learning rate of 1× 10−4, which achieves a mean
average precision (mAP) of 0.43 on the evaluation set of AudioSet
dataset.

4.4. Experimental setups

We train the proposed model for 30 epochs using Adam optimizer
[26] and a batch size of 32. The learning rate is linearly increased
to 1× 10−4 in the first five epochs using warm-up, which is then
multiplied by 0.1 every 10 epochs. To mitigate over-fitting prob-
lem, dropout with rate of 0.2 is applied in the whole model. Label
smoothing [27] with a smoothing factor of 0.1 is used to avoid over-
confident prediction. We use beam search with a beam size up to 5
to improve the decoding performance during inference stage.

4.5. Evaluation metrics

In line with previous works, we evaluate our methods using ma-
chine translation and captioning metrics [13]. BLEUn, ROUGEl
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Model BLEU1 BLEU2 BLEU3 BLEU4 ROUGEL METERO CIDEr SPICE SPIDEr
ACT s DeiT AudioSet 0.643 0.483 0.352 0.249 0.469 0.218 0.669 0.160 0.415
ACT m DeiT AudioSet 0.653 0.495 0.363 0.259 0.471 0.222 0.663 0.163 0.413
ACT l DeiT AudioSet 0.647 0.488 0.356 0.252 0.468 0.222 0.679 0.160 0.420

ACT m scratch 0.567 0.411 0.285 0.191 0.417 0.187 0.501 0.127 0.314
ACT m DeiT 0.606 0.445 0.319 0.224 0.445 0.207 0.586 0.147 0.367

RNN+RNN [3] 0.614 0.446 0.317 0.219 0.450 0.203 0.593 0.144 0.369
CNN+RNN [6] 0.655 0.476 0.335 0.231 0.467 0.229 0.660 0.168 0.414

CNN+Transformer [9] 0.641 0.479 0.344 0.236 0.469 0.221 0.693 0.159 0.426
CNN+Transformer scratch [9] 0.610 0.461 0.334 0.234 0.455 0.206 0.629 0.144 0.386

Table 2: Scores of the ACT model on the AudioCaps test set. DeiT: the ACT encoder is initialized with the parameters in DeiT, AudioSet: the
ACT encoder is pre-trained on AudioSet.

and METEOR are machine translation metrics. BLEUn is a modi-
fied precision metric with a sentence-brevity penalty, calculated as a
weighted geometric mean over different length n-grams. ROUGEl

calculates F-measures by counting the longest common subsequence.
METEOR evaluates a caption by computing a harmonic mean of
precision and recall based on explicit word-to-word matches be-
tween the caption and given references. Captioning metrics contain
CIDEr , SPICE and SPIDEr . CIDEr calculates the cosine similar-
ity between term frequency inverse document frequency (TF-IDF)
weighted n-grams. SPICE creates scene graphs for captions and
calculates F-score based on tuples in the scene graphs. SPIDEr is
the average of SPICE and CIDEr and is selected as the official rank-
ing metric in DCASE challenge, the SPICE score ensures captions
are semantically faithful to the audio content, while CIDEr score
ensures captions are syntactically fluent.

5. RESULTS

5.1. Performance comparison

Table 2 presents the results on AudioCaps test set. We compare the
proposed ACT model with three representative audio captioning mod-
els, “RNN+RNN” [3], “CNN+RNN” [6] and “CNN+Transformer”
[9]. In these models, CNNs are all pre-trained on upstream audio-
related tasks. As can be seen in Table 2 that the ACT model outper-
forms “RNN+RNN” model substantially in all evaluation metrics
and achieves slightly higher scores than “CNN+RNN” model in most
metrics. Compared with the state-of-the-art “CNN+Transformer” ap-
proach, ACT model outperforms it in machine translation metrics
but gives slightly lower scores in CIDEr . As machine translation
metrics are mostly based on n-grams, these results show that the
ACT model has better ability in generating words accurately. In
addition, training an ACT model is faster than “CNN+Transformer”
architecture, where the former takes less than five minutes for one
epoch and “CNN+Transformer” needs seven minutes in our experi-
ments. In summary, the ACT model shows competitive performance
as compared to other state-of-the-art approaches, and it is simple as
it is based only on the self-attention mechanism.

5.2. Ablation studies

The ablation studies are carried out to investigate the effectiveness
of the pre-trained encoder and the influence of the hyper-parameters
in the decoder. From the experimental results, we can see that pre-
training the ACT encoder can boost the performance significantly.
Even only using the pre-trained DeiT model, which is originally

trained for image classification task, can bring significant perfor-
mance gains in all the evaluation metrics. Pre-training on AudioSet
as an audio tagging task further improves the system to approach the
state-of-the-art performance. We also compare the ACT model with
the “CNN+Transformer” model both trained from scratch, the results
show that the ACT model performs worse than “CNN+Transformer”
without encoder pre-training. These results suggest that pre-training
the ACT encoder with a large dataset is important, and prove that
Transformer network needs more training data than CNNs to achieve
competitive performance.

We perform experiments on the three models with different
numbers of layers and heads in the decoder. From the observations,
the ACT model is slightly sensitive to the choice of hyper-parameters
in the decoder. These three models achieve similar performance,
among which ACT m with four decoder layers performs better in
machine translation metrics, while ACT l achieves higher CIDEr

and SPIDEr scores. The ACT model only needs shallow Transformer
decoder layers compared to machine translation models in natural
language tasks which typically contain 12 Transformer decoder
layers [7]. There might be two reasons. First, the amount of training
data in audio captioning is far less than data in natural language
processing tasks. Second, the length of the audio captions are usually
shorter than sentences in the natural language tasks.

6. CONCLUSION

We have presented a novel audio captioning model, Audio Caption-
ing Transformer (ACT), which is a full Transformer model based
on the self-attention mechanism. The encoder of the proposed ACT
model can model the global and fine-grained information within an
audio signal simultaneously, and has better ability to capture tem-
poral relationships between audio events than CNNs. Experimental
results show that the ACT model can outperform other state-of-
the-art audio captioning systems in most metrics. Further research
should be carried out to adapt the ACT model for audio clips of
varied lengths.
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